skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marini, Elisabetta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape ( n = 7; 700 CE Mexico) and historic dental calculus ( n = 44; 1770–1855 CE, UK), as well as two novel dental calculus datasets: Maya ( n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians ( n = 11; 1400–850 BCE, Italy). Periodontitis-associated bacteria ( Treponema denticola , Fusobacterium nucleatum and Eubacterium saphenum ) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers ( Eubacterium biforme, Phascolarctobacterium succinatutens ) and potentially disease-associated bacteria ( Escherichia , Brachyspira) . Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter–gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’. 
    more » « less